Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A total of 10,586P‐to‐Sradial receiver functions recorded by 64 broadband seismic stations were utilized to image the 410 and 660 km discontinuities (d410 and d660, respectively) bordering the mantle transition zone (MTZ) beneath the Sumatra Island, the Malay Peninsula, and the western margin of the South China Sea. The d410 and d660 were imaged by stacking receiver functions in successive circular bins with a radius of 1°, after moveout corrections based on the 1‐D IASP91 Earth model. The resulting apparent depths of the discontinuities exhibit significant and spatially systematic variations. The apparent depths of the d410 and d660 range from 382 to 459 km and 637 to 700 km with an average of 406 ± 13 and 670± 12 km, respectively, while the corresponding values for the MTZ thickness are 217 to 295 km and 261 ± 13 km. Underneath southern Sumatra and adjacent regions, the MTZ is characterized by an uplifted d410 and a depressed d660. While the former is probably caused by the low temperature anomaly, the latter is most likely related to a combination of the low temperature anomaly and dehydration associated with the subducted Australian Plate that has reached at least the d660. In contrast, an abnormally thin MTZ is imaged to the southwest of the Toba Caldera. This observation, when combined with results from previous seismic tomography studies, can be explained by advective thermal upwelling through a slab window.more » « less
-
Abstract Seismic azimuthal anisotropy characterized by shear wave splitting analyses using teleseismicXKSphases (includingSKS,SKKS, andPKS) is widely employed to constrain the deformation field in the Earth's crust and mantle. Due to the near‐vertical incidence of theXKSarrivals, the resulting splitting parameters (fast polarization orientations and splitting times) have an excellent horizontal but poor vertical resolution, resulting in considerable ambiguities in the geodynamic interpretation of the measurements. Here we useP‐to‐Sconverted phases from the Moho and the 410‐ (d410) and 660‐km (d660) discontinuities to investigate anisotropy layering beneath Southern California. Similarities between the resulting splitting parameters from theXKSandP‐to‐Sconverted phases from thed660 suggest that the lower mantle beneath the study area is azimuthally isotropic. Similarly, significant azimuthal anisotropy is not present in the mantle transition zone on the basis of the consistency between the splitting parameters obtained usingP‐to‐Sconverted phases from thed410 andd660. Crustal anisotropy measurements exhibit a mean splitting time of 0.2 ± 0.1 s and mostly NW‐SE fast orientations, which are significantly different from the dominantly E‐W fast orientations revealed usingXKSandP‐to‐Sconversions from thed410 andd660. Anisotropy measurements using shear waves with different depths of origin suggest that the Earth's upper mantle is the major anisotropic layer beneath Southern California. Additionally, this study demonstrates the effectiveness of applying a set of azimuthal anisotropy analysis techniques to reduce ambiguities in the depth of the source of the observed anisotropy.more » « less
An official website of the United States government
